COSBench Adaptor Development Guide

Version 2.5.3

April, 2013
Wang, Yaguang

This document describes how to extend COSBench to support new storage systems by developing
corresponding adaptors. It depicts the model assumed by COSBench, lists interfaces to be implemented
in adaptors, and demonstrates how to adopt new adaptors into the system.

Document Number: 328792-001US

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL
PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL
PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information. The products described in this document may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. Current characterized errata are
available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site
http://www.intel.com/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more
information, go to http://www.intel.com/performance.

*Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

0413/RIM/MESH/PDF 328792-001US

COSBench Adaptor Development Guide | 2

http://www.intel.com/
http://www.intel.com/performance

Contents

I [g 1 o Yo [¥Tord To T o A TS RTPTRSRI 6
B2 €] Lo 117 T PSPPSR 6
R L= o 1=t] oY ol =Y o} £ PSPPI 7
3.0 OVEBIVIBW ittt ettt e e ettt e e e e e e bbbttt e e e e e e e an b e b e et e e e e e e e n s b e b et e e e e e s e s nnrraeeeeeeeseannneneeeeeeeaanan 7
T8 Y o TSP PPPPPPTPPR 7
I T 1 1T o | SRS 8
R 00T (=4 PP PP PPPPPPPPTN 8
Uy o o Y o SRR 8
o R = To 1T o - | PRSP 8
A 1Y T = Yol LTSRS 8
.21 IE() oo e e ee e e e e ee e e et et e e e s e s e s et et e e e see e e eeeeeeneeeeeeeer e eeeeneenens 8
A 11 o To 1= | S 9
L B (=14 - [4 1 U PUPUPOt 9
A o - 1o Y SRS 9

I re] - Tl Y T U T USRS TURTPP 9
LT 101 1= =T LS 9
700 0 T T TSRS 9
oI B Ao 1Y o 7= | U PPNt 10
oI Y -1 0 o 1 (PPNt 10
5.1.4 SEEAUTNCONTEXE()..ceovvreeieirreeeeeitiee ettt e eectre e e eeeteeeeeetreeeeetaeeeeeetaeeeeeatbeeeesetseeeesetseeeesssseeeesnssaseesses 10
I B Y (0] o1 <Yt o | ISRt 10
5.1.6 CreateCoONTAINEI() .cccuiee ettt ettt e et e e e et te e e e ettt e e e e e bteeeeebteeeeebeeeeeebeeeaesstaaaesassaeaeanes 11
I Aol =T Y (=10 o1 [=T o o | SRS 11
5.1.8 delet@CONTAINEI() .ccvrieeieiiiee ettt ettt ettt e e ettt e e e et e e e e bt e e e e eebbeeeeebteeaeesbaeaessbaeaesassanaesnnes 11
oI e I L= 1= =10] o=t f | TR PUPTRUUUTRIRt 11
LT 0 0 1= oo | ISR 12

(Sl] oo gl 11V =1 Lo o .4 =T o} AR RURRN 12
6.0 OVEBIVIBW ..iiiiiiiieieee e ettt et e e e ettt e e e e e e e e e et teeeee e e e ss b et teeeeeeaaaassbeeeeeeeeeaanssbaeeeeeesasannnsnaeeeeseaanan 12
(oA o (VTS o D =Y oY =T oo [T Vol =T3P PR 12

COSBench Adaptor Development Guide | 3

o R B 1o B o T VA 1 o= =TSSR 12

6.2.2 COSBENCH BUNGIES ..ottt ettt ettt e sttt s e sbe e e sabeesbeeesmneesaneeesanes 12

5.3 SOUICE COUE SEIUCTUIEeeitieiieeiee ettt ettt et sb e st sat e ettt e b e sbeesaeeeateebeesbeesaeesanenas 13
Lo @lo T ol 1= qU T 4 o PRSP 13
6.4. 1 META-INFAMANIFEST ..oeiittiitie e ete ettt et e st e r e et e e teesteesaaesatesabesnteentaessaassaessseesseeseessasssesssneans 13
6.4.2 META-INF\spring\plugin-ConteXt. XMlc..ccciiiiiriiieiiie ettt et eetre e e anes 14

7 Class Diagram and Call FIOW......ciccuuieiiiiiiee ittt stiee ettt e st e e st e e s sbee e e s ssbaeeessraaeessseaeessanseeessnes 16
A XU oYY o B I T oY o =T PRSPPI 17
7.2 STOrAGEAPI LIFECYCIE ...ueeeieeeeee et e e e et e e e et e e e s et e e e e eeabeeeeenbeeeeennrenas 18
7.3 AuthAPI and StorageAP] INTEraCtioNciivceviiie ettt e e e e sebee e s e eabeeas 19

e 1= 10 4[] (=T PP PPPPPPTTTROPPN 19
1S IR 110] o] (3 ad o T =Tt ARt 19
O LT o] Fo ¥ s o T=T o | PP 20
10.1 Generate Adaptor BUNAIEoouiiiiieee ettt e e e ebre e e e e bte e e e ebaaeeeentaeeeeanes 20
10.2 Register Adaptor BUNGAIEooi ittt e e e tte e e e et e e e e e bte e e s ebteeeseassaeeesntaneesnnes 20
10.3 UPdate BUNGIE LiSt...ciiiieiieiiieeiciiiee ettt sttt e s st e e s ette e e e sbae e e e sbteeeesabteeeesastaeeesssaeessnsseeessnes 21

COSBench Adaptor Development Guide | 4

Revision History

Revision Date Description

2.0 November 9, 2012 Initial version for v2.0

2.1 November 22, 2012 Add diagrams and samples

2.2 February 19, 2013 Add deployment section

2.3 March 18, 2013 Add section 5.1.10 for “abort” method in storageAPI

2.4 March 28, 2013 o Add call flow for authAPI and storageAPI interfaces
e Add explanation for arguments in interface definition
e Reword some sentences

2.5 April 10, 2013 e Change folder name from “modules” to “plugins”

253 August 09, 2013 e Add section 10.1 to explain how to generate adaptor

bundle.
Miscellaneous corrections.

COSBench Adaptor Development Guide | 5

1 Introduction

COSBench is an open-source distributed benchmark tool used to quantify the performance of cloud
object storage systems. That data enables users to compare various cloud object stores, evaluate
hardware and software stacks, and identify bottlenecks for performance tuning.

Users can get more information about COSBench, download the installation package and other
materials, and contribute at https://github.com/intel-cloud/cosbench. For information about installation,
configuration, and use of the tool, see the “COSBench User Guide.”

COSBench natively supports OpenStack* Swift and Amplidata AmpliStor* v2.3, v2.5, and 3.1. COSBench
is based on a modular, extensible design that includes pre-defined APIs for the development of adaptors
to support additional storage systems.

COSBench

User Interface

Execution Engine

— .

Storage System

In this document, code samples use the character string “xxx” to represent the version of COSBench
being used. In practice, users would substitute the actual COSBench version in place of “xxx” (e.g., 0.3.0).

2 Glossary

Adaptor: a bundle that implements the Auth API and/or Storage API

API: the interface exposed from COSBench to enable extensibility, currently including the Auth API and
Storage API

Bundle (also referred to as OSGi Bundle or plug-in): a JAR file compliant with the Open Services Gateway
initiative (OSGi) specification

COSBench Adaptor Development Guide | 6

https://github.com/intel-cloud/cosbench

3 General Concepts

3.1 Overview

The connection of COSBench to a storage system and its basic operation are depicted below; there are
three major components:

e API
e (Client
e Context

COSBench

o Auth

N

Storage

PUT
GET

DELETE

1
1
|
i
1
|
1
1
i
1
|
1
1
|
1
1
1
1
1
1
1
1
|
|
1
(]
i
1
|
1
|
i
|
|
1
1
|
1
1
1
1
|
l

g

1. COSBench calls Login() through an authentication client using credentials, which are passed to the
target authentication server to authenticate the credentials passed in. If authentication succeeds, a
corresponding token is returned and stored in authentication context.

2. COSBench calls PUT/GET/DELETE() through the storage client, and the storage client acquires the
authentication token from context.

3. After obtaining the token, the storage client makes calls to the target storage server.

3.2 APIs

COSBench defines two sets of APIs to adapt new storage systems:

e Auth API, to handle authentication-related work
e Storage API, to handle data-access-related work

The implementation of both APIs can be included in one OSGi bundle or separated into two OSGi
bundles. If the authentication mechanism is a general-purpose one such as Open Auth or Kerberos, best
practices call for implementing the Auth APl in an individual bundle.

COSBench Adaptor Development Guide | 7

3.3 Client

Client is a class that encapsulates all interactions with target storage or authentication systems.

3.4 Context

Normally, it’s necessary to exchange information between an authentication client and a storage client,
such as an authenticated token returned from the authentication system; that token is required by the
storage client for subsequent storage operations. That type of shared information is maintained in one
context, as a key-value pair.

4 Auth API

4.1 Credential

Credential consists of a parameter list that includes all information related for authentication on a
storage client (e.g., username, password, and authentication URL). Different storage systems may use
different parameter lists.

4.2 Interfaces

public void init(Config config, Logger logger);
public void dispose();

public Context getParms();
public AuthContext logi ;

4.2.1 init()
/**
* Initializes an <code>Auth-API</code> with parameters contained in the
* given <code>config</code>, whose content depends on the specific Auth
* type. Normally, it will also initialize one client for authentication.

@param config
- one instance from com.intel.cosbench.config.Config, which
includes parameters for authentication, and it will be passed
from execution engine.

@param logger
- one instance from com.intel.cosbench.log.Logger, which
delivers logging capabilities to Auth-API, and it will be passed

from execution engine.

COSBench Adaptor Development Guide | 8

4.2.2 dispose()

/**

* release the resources held by the Auth API.

*/

public void disp

4.2.3 getParms()
/**
* retrieve parameters and current settings used by the AuthAPI.

* @return Context - one com.intel.cosbench.context.Context instance which contains all
parameters configured for the authentication mechanism.

*/

public Context

4.2.4 login()
/**
* trigger backend authentication mechanism.

* @return AuthContext - one com.intel.cosbench.context.AuthContext instance which contains all
parameters configured for the authentication mechanism if authentication is successful, and
otherwise, an exception will be raised.

*/

public AuthContext login

5 Storage API

5.1 Interfaces

public void init(Config config, Logger logger);

public void dispose();

public Context getParms();

public void setAuthContext(AuthContext info);

public InputStream getObject(String container, String object, Config config);
public void createContainer(String container, Config config);

public void createObject(String container, String object, InputStream data, long length, Config
config);

public void deleteContainer(String container, Config config);
public void deleteObject(String container, String object, Config

5.1.1 init()
/**

* Initializes a <code>Storage-API</code> with parameters contained in the

* given <code>config</code>, whose content depends on the specific storage
* type. Normally, it will also initialize one client for storage access.

COSBench Adaptor Development Guide | 9

@param config
- one instance from com.intel.cosbench.config.Config, which

includes parameters for authentication, and it will be passed
from execution engine.

@param logger
- one instance from com.intel.cosbench.log.Logger, which
delivers logging capabilities to Storage-API, and it will be passed
from execution engine.

/**
* release the resources held by the Storage API.
*/

public void disp

5.1.3 getParms()
/**
* retrieve parameters and current settings used by the StorageAPI.

* @return Context - one Context instance which contains all parameters configured for the
storage.

*/
public Context

5.1.4 setAuthContext()
/**
* associate authenticated context with Storage API for further storage operations.
* @param info - one AuthContext instance, normally, it's the return from login() in Auth API.
*/
public void setAuthContext(AuthContext info);

5.1.5 getObject()
/**

* download an object from a container.
b3

* @param container - the name of a container.
* @param object - the name of an object to be downloaded.

* @param config - the configuration used for this operation.

* @return inputStream - the inputStream of the object content. If null that means the object
doesn't

* exist or something bad happened.

COSBench Adaptor Development Guide | 10

*/

public InputStream getObject(String container, String

5.1.6 createContainer()
/**
* create a container.
3
* @param container - the name of a container.
* @param config - the configuration used for this operation.
*/

public void createContainer(String container, Config config);

5.1.7 createObject()
/**
* upload an object into a container.
3
* @param container - the name of a container.
* @param object - the name of an object to be uploaded.
* @param data - the inputStream of the object content.
* @param length - the length of object content.
* @param config - the configuration used for this operation.
*/
public void createObject(String container, String object, InputStream data, long length, Config

5.1.8 deleteContainer()

@param
@param

public void deleteContainer(String container, Config config);

5.1.9 deleteObject()
/**

* delete an object.
b3

* @param container - the name of a container.

* @param object - the name of an object to be deleted.
* @param config - the configuration used for this operation.
*/

public void deleteObject(String container, String object, Config

COSBench Adaptor Development Guide | 11

5.1.10 abort()

/**

* Aborts the execution of an on-going storage operation (HTTP request) if
* there is one. The method expects to provide one approach to abort outstanding

* operation gracefully when the worker hits some termination criteria.

*/

6 Adaptor Development

6.1 Overview

An adaptor is actually an OSGi* (http://www.osgi.org) bundle. A few IDEs support the development of
OSGi bundles, and the IDE used for COSBench is Eclipse* SDK 3.7 Indigo (http://www.eclipse.org).

Developing a new adaptor involves following steps:

1. Import a few dependencies.
2. Set up source code structure.
3. Modify configurations.

6.2 Plug-in Dependencies

6.2.1 Third-party Libraries

- other libraries needed based on abcStor specific requirements.
- com.springsource.org.apache.commons.codec-1.30.jar

- org.apache.httpcomponents.httpclient_4.1.3.jar

- org.apache.httpcomponents.httpcore_4.1.4.jar

- cosbench-api_xxx.jar

- cosbench-config_xxx.jar

- cosbench-http_xxx.jar

- cosbench-log_xxx.jar

6.2.2 COSBench Bundles

Two primary bundling approaches are supported, corresponding to the two APIs to be implemented.
These approaches are illustrated below using the sample bundles abcStor and abcAuth. Other
approaches, such as leveraging existing auth or storage bundles, are not included.

e Twoinone:
o abcStor+abcAuth bundle
e One plus one:
o abcStor bundle (Storage API)

COSBench Adaptor Development Guide | 12

http://www.osgi.org/
http://www.eclipse.org/

o abcAuth bundle (AuthAPI)

6.3 Source Code Structure

Source code typically makes use of two folders:

e The “api” folder includes all required API declarations, as well as calls to functionalities included
in the “client” folder.

e The “client” folder includes storage/auth-specific implementation. Classes in this folder don’t
need any COSBench bundles, based on considerations for the following two cases:

o Ifthereis tested code in an adaptor developer site, the developer can put the code into
the “client” folder and add the necessary wrapper in “api” to call into it.

o Forafresh, new implementation, the developer can focus on storage-specific
implementations in client and build tests based on the contents of this folder, without
the involvement of COSBench code or OSGi plug-in-related configurations, simplifying
development efforts.

The reference code structure given below uses abcStor as an example; the full abcStor project is stored
in the “plugin” folder in the COSBench package.

| src
| com.abc
| api
abcStorage.java
abcStorFactory.java
| client

abcStorClient.java
abcStorConstants.java
abcStorClientException.java

6.4 Configurations

6.4.1 META-INF\MANIFEST

Below is one sample for the MANIFEST file; adaptor developers must modify this code according to their
specific development requirements. Normally, the adaptor developer must review the “Import-Package”
list.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Abc Storage Client Bundle
Bundle-SymbolicName: cosbench-abcstor
Bundle-Version: 0.3.1.0

Bundle-Vendor: Abc Co.
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

COSBench Adaptor Development Guide | 13

Import-Package: com.intel.cosbench.api.auth,
com.intel.cosbench.api.context,
com.intel.cosbench.api.storage,
com.intel.cosbench.client.http,
com.intel.cosbench.config,

com.intel.cosbench.log,
org.apache.commons.codec;version="[1.3.0,2.0.0)",
org.apache.commons.codec.net;version="[1.3.0,2.0.0)",
org.apache.http;version="[4.1.4,5.0.0)",
org.apache.http.client;version="[4.1.3,5.0.0)",
org.apache.http.client.methods;version="[4.1.3,5.0.0)",
org.apache.http.conn;version="[4.1.3,5.0.0)",
org.apache.http.entity;version="[4.1.4,5.0.0)",
org.apache.http.message;version="[4.1.4,5.0.0)",
org.apache.http.params;version="[4.1.4,5.0.0)",
org.apache.http.util;version="[4.1.4,5.0.0)"

6.4.2 META-INF\spring\plugin-context.xml
The sample code below illustrates “one plus one” bundling mode; there are two plug-in projects.

abcAuth

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:osgi="http://www.springframework.org/schema/osgi"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<bean name="authFactory" class="com.abc.api.abcAuth.AbcAuthFactory" />
<osgi:service ref="authFactory" context-class-loader="service-provider"

interface="com.intel.cosbench.api.auth.AuthAPIFactory">
</osgi:service>

</beans>

abcStor

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlIns="http://www.springframework.org/schema/beans"

COSBench Adaptor Development Guide | 14

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:osgi="http://www.springframework.org/schema/osgi"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<bean name="storageFactory" class="com.abc.api.abcStor.AbcStorageFactory" />

<osgi:service ref="storageFactory" context-class-loader="service-provider"
interface="com.intel.cosbench.api.storage.StorageAPIFactory">

</osgi:service>

</beans>

The code sample below is for “two in one” bundling mode; there is one plug-in project, and two OSGi
services are defined in one plugin-context.xml:

abcStor + abcAuth

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:osgi="http://www.springframework.org/schema/osgi"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<bean name="authFactory" class="com.abc.api.abcAuth.AbcAuthFactory" />

<osgi:service ref="authFactory" context-class-loader="service-provider"
interface="com.intel.cosbench.api.auth.AuthAPIFactory">

</osgi:service>
<bean name="storageFactory" class="com.abc.api.abcStor.AbcStorageFactory" />

<osgi:service ref="storageFactory" context-class-loader="service-provider"
interface="com.intel.cosbench.api.storage.StorageAPIFactory">

</osgi:service>

</beans>

COSBench Adaptor Development Guide | 15

7 Class Diagram and Call Flow

The following class diagram shows the relationship between classes related to adaptor development.

Context
StorageAPI
+init()
AuthAPI +dispose()
+getParms()
. AuthAPIFactory AuthContext +satAuthContext() StorageAPlFactory .
-=->| +init) - <---| *getObject() <----
+getAuthName() :SEEF?;:?ES[} :Eggiggﬁggero +getStorageName()
+getAuthAPI() +iogin B +deleteObject() +getStorageAPI()
/[T +deleteContainer()

NoneAuthFactory NoneAuth NoneStorage NoneStDrageFactoryﬁ

abcStorfactory

COSBench Adaptor Development Guide | 16

7.1 AuthAPI Lifecycle

The sequence for how authAPI (abcAuth) is initialized, performed, and disposed is illustrated below; the
procedure is driven by the COSBench execution engine.

<Execution Engine> AuthAPIService AuthAPIFactory AuthAPI
createAuthdpil) i : : 1:
getiuthi)] : :
\getﬁuthAPIH i :
new() :
createAuth() !
init()
loginf) /
: login(}
disposeRuntime()
7 dispose()

COSBench Adaptor Development Guide | 17

7.2 StorageAPI Lifecycle

The sequence for how storageAPI (abcStorage) is initialized, performed, and disposed is illustrated
below; the procedure is driven by the COSBench execution engine.

<Execution Enginex StorageAPlService StorageAPIFactory StorageAPl
createStoragedpil)! :
I —
petstorage()

ra

| |

| |

| |

| |

| |

W‘cﬁtorag&ﬁ.l’*l:] I I
| |

|

|

new()
createStorage!)+
init()
setAuthContext() /
: setAuthContext()
createObject()
7 createOhject()
disposeRuntimel)
dispose(}

COSBench Adaptor Development Guide | 18

7.3 AuthAPI and StorageAPI Interaction

Inside COSBench, the execution engine calls login() on AuthAPI (abcAuth) to authenticate the user; after
successfully getting valid auth context, it calls setAuthContext() to pass the returned auth context to
StorageAPI (abcStor). At this time, COSBench can issue object-storage-related operations through
information from auth context. The flow is illustrated below.

[AuthAP] J { StorageAP! }

i |

|

i

login() ST :

_ 5 1 auth context !

<-- '
setAuthContext()
createObject()

8 Parameters

A new auth or storage adaptor could require different parameters, and those parameters would be
defined in the “config” attribute within the workload configuration file as key-value pairs separated by
semicolons, as shown below (using abcAuth as an example):

<auth type="abcauth"

/>

Normally, the parameters will be read in “init()” to help initialize the client.

9 Sample Project

There is a sample project shipped with the release package within the “ext” folder; one auth sample and
one storage sample are included.

| libs
com.springsource.org.apache.commons.codec-1.3.0.jar
org.apache.httpcomponents.httpclient_4.1.3.jar
org.apache.httpcomponents.httpcore_4.1.4.jar

| plugins

cosbench-api_xxx.jar
cosbench-config_xxx.jar
cosbench-http_xxx.jar
cosbench-log_xxx.jar

COSBench Adaptor Development Guide | 19

| adaptor

| src
| com.abc
| api
abcAuth.java
abcAuthFactory.java
| client
abcAuthClient.java
abcAuthConstants.java
abcAuthClientException.java
| META-INF
I
| src
| com.abc
| api
abcStorage.java
abcStorFactory.java
| client
abcStorClient.java
abcStorConstants.java
abcStorClientException.java
| META-INF

10 Deployment

A few additional steps are needed to deploy adaptor bundles into COSBench.

10.1 Generate Adaptor Bundle

In Eclipse IDE, to generate the plugins by right clicking the project, and selecting "export... -> Plug-in
Development -> Deployable plugins and fragments", and setting the "Directory" to "dist\osgi" folder,
then the plugins library will be generated at "dist\osgi\plugins" folder. E.g., for “abc-stor” bundle, one
bundle named “cosbench-abcstor_xxx.jar” will be generated.

10.2 Register Adaptor Bundle

The OSGi configuration file is located at conf/.driver/config.ini; a new adaptor bundle must register itself
in it. Normally, COSBench-related plug-ins are near the end of the file, shown in the following:

plugins/cosbench-castor,\
plugins/cosbench-log4j,\
plugins/cosbench-log@6\:start,\
plugins/cosbench-config@6\:start,\

COSBench Adaptor Development Guide | 20

plugins/cosbench-http@6\:start,\
plugins/cosbench-core@7\:start,\
plugins/cosbench-api@7\:start,\
plugins/cosbench-mock@7\:start,\
plugins/cosbench-ampli@7\:start,\
plugins/cosbench-swift@7\:start,\
plugins/cosbench-keystone@7\:start,\
plugins/cosbench-swauth@7\:start,\

plugins/cosbench-driver@7\:start,\
plugins/cosbench-tomcat@7\:start,\
plugins/cosbench-core-web@7\:start,\
plugins/cosbench-driver-web@7\:start

10.3 Update Bundle List

The launch script for the driver—* ”—will check whether the bundle is loaded successfully.
In order to ensure that the adaptor bundle is loaded successfully, the script should be modified by
updating its bundle list as follows:
OSGI_BUNDLES="cosbench-log_${VERSION} cosbench-tomcat_${VERSION} cosbench-
config_${VERSION?} cosbench-core_${VERSION} cosbench-core-web_${VERSION} cosbench-
api_${VERSION} cosbench-http_${VERSION} cosbench-mock_${VERSION} cosbench-

ampli_${VERSION?} cosbench-swift_${VERSION} cosbench-
keystone_${VERSION} cosbench-driver_${VERSION} cosbench-driver-web_${VERSION}"

COSBench Adaptor Development Guide | 21

